论文标题

关于叙事信息和故事的蒸馏

On Narrative Information and the Distillation of Stories

论文作者

Ashley, Dylan R., Herrmann, Vincent, Friggstad, Zachary, Schmidhuber, Jürgen

论文摘要

讲故事的行为是人类意味着什么的基本组成部分。这项工作介绍了叙事信息的概念,我们将其定义为故事与构成故事的项目之间的信息空间的重叠。使用对比学习方法,我们展示了如何利用现代人工神经网络来提炼故事并提取叙事信息的表示。然后,我们演示了进化算法如何利用它来提取一组叙事模板,以及这些模板如何与我们介绍的新颖曲线拟合算法相连 - 可以重新排序音乐专辑以自动诱导其中的故事。在这样做的过程中,我们提供了有力的统计证据,表明这些叙事信息模板存在于现有专辑中。当我们仅在这里尝试音乐专辑时,我们作品的前提扩展到任何形式的(很大程度上)独立媒体。

The act of telling stories is a fundamental part of what it means to be human. This work introduces the concept of narrative information, which we define to be the overlap in information space between a story and the items that compose the story. Using contrastive learning methods, we show how modern artificial neural networks can be leveraged to distill stories and extract a representation of the narrative information. We then demonstrate how evolutionary algorithms can leverage this to extract a set of narrative templates and how these templates -- in tandem with a novel curve-fitting algorithm we introduce -- can reorder music albums to automatically induce stories in them. In the process of doing so, we give strong statistical evidence that these narrative information templates are present in existing albums. While we experiment only with music albums here, the premises of our work extend to any form of (largely) independent media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源