论文标题
Glowgan:从野外LDR图像中无监督的HDR图像学习
GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
论文作者
论文摘要
大多数野外图像都以低动态范围(LDR)形式存储,作为对高动态范围(HDR)视觉世界的部分观察。尽管动态范围有限,但这些LDR图像通常被不同的暴露捕获,隐含地包含有关基础HDR图像分布的信息。受到这项直觉的启发,在这项工作中,我们呈现出了最好的知识,是从野外LDR图像收集中学习HDR图像的生成模型的第一种方法,以完全无监督的方式。关键的想法是训练生成的对抗网络(GAN)生成HDR图像,当在各种暴露下投影到LDR时,与真实的LDR图像无法区分。 HDR到LDR的投影是通过摄像机模型实现的,该模型捕获了曝光和相机响应功能中的随机性。实验表明,我们的方法可以在许多具有挑战性的情况下(例如景观,闪电或窗户)合成逼真的HDR图像,在此情况下,以前有监督的生成模型会产生过度曝光的图像。我们进一步证明了Glowgan启用了无监督的逆音映射(ITM)的新应用。我们的ITM方法不需要HDR图像或配对的多曝光图像进行培训,但是它比对此类数据训练的最新监督学习模型重建了过度曝光区域的合理信息。
Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.