论文标题

紧密绑定到异质随机变量的总和:应用于机会约束编程

Tight Bound for Sum of Heterogeneous Random Variables: Application to Chance Constrained Programming

论文作者

Jacquet, Quentin, Zorgati, Riadh

论文摘要

我们研究了贝内特型浓度不平等,用于异质和自变量的总和,定义为一维最小化。我们表明,这种优于标准已知边界的改进仍然可以计算:我们开发了一种多项式时间算法来计算置信度界限,该算法被证明可以随epsilon-solution终止。从拟议的不平等中,我们将紧密的分配范围推断为偶然受限的编程问题。为了说明我们方法的效率,我们考虑了两种用例。首先,我们研究了偶然受限的二进制背包问题,并通过获得比古典不平等(例如Chebyshev-Cantelli或Hoeffding)更强大的解决方案来突出我们的切面方法的效率。其次,我们处理支持向量机问题,其中凸的保守近似提高了分离超平面的鲁棒性,同时保持计算可牵持。

We study a tight Bennett-type concentration inequality for sums of heterogeneous and independent variables, defined as a one-dimensional minimization. We show that this refinement, which outperforms the standard known bounds, remains computationally tractable: we develop a polynomial-time algorithm to compute confidence bounds, proved to terminate with an epsilon-solution. From the proposed inequality, we deduce tight distributionally robust bounds to Chance-Constrained Programming problems. To illustrate the efficiency of our approach, we consider two use cases. First, we study the chance-constrained binary knapsack problem and highlight the efficiency of our cutting-plane approach by obtaining stronger solution than classical inequalities (such as Chebyshev-Cantelli or Hoeffding). Second, we deal with the Support Vector Machine problem, where the convex conservative approximation we obtain improves the robustness of the separation hyperplane, while staying computationally tractable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源