论文标题
$ l^p $操作员代数的持久性近似属性
Persistence approximation property for $L^p$ operator algebras
论文作者
论文摘要
在本文中,我们研究了定量$ k $的持久性近似属性 - 过滤$ l^p $运算符代数的理论。此外,我们在[1,\ infty)$中定义$ l^p $运算符代数的定量装配图。最后,在$ l^{p} $交叉产品和$ l^{p} $ roe代数的情况下,我们为持久性近似属性找到足够的条件。这使我们能够提供一些涉及$ l^{p} $(粗)Baum-Connes猜想的应用程序。
In this paper, we study the persistence approximation property for quantitative $K$-theory of filtered $L^p$ operator algebras. Moreover, we define quantitative assembly maps for $L^p$ operator algebras when $p\in [1,\infty)$. Finally, in the case of $L^{p}$ crossed products and $L^{p}$ Roe algebras, we find sufficient conditions for the persistence approximation property. This allows us to give some applications involving the $L^{p}$ (coarse) Baum-Connes conjecture.