论文标题

利用基于共识的优化中的记忆效应和梯度信息:均值法律的全球融合

Leveraging Memory Effects and Gradient Information in Consensus-Based Optimization: On Global Convergence in Mean-Field Law

论文作者

Riedl, Konstantin

论文摘要

在本文中,我们研究了基于共识的优化(CBO),这是一种用于高维度中的非凸和非平滑全局优化的多功能,灵活和可定制的优化方法。 CBO是一种多粒子元启发式化,它在各种应用中有效,同时也可以通过理论分析的简约设计。然而,基本动力学足够灵活,可以通过分析CBO的变体显示,该变体使用记忆效应和梯度信息,将广泛用于进化计算和机器学习的不同机制。我们严格地证明,这种动力学会在均值函数中收敛于对方法初始化的最小化假设下的一系列函数的目标函数的全局最小化器。该证明特别揭示了如何在某些应用中进一步利用动力学中的力量,而不会失去可证明的全球融合。为了证明此处研究在某些应用中调查的记忆效应和梯度信息的好处,我们提供了该CBO变体在机器学习和压缩传感等应用中具有优越性的数值证据,这些应用程序可以扩大CBO应用程序的范围。

In this paper we study consensus-based optimization (CBO), a versatile, flexible and customizable optimization method suitable for performing nonconvex and nonsmooth global optimizations in high dimensions. CBO is a multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate different mechanisms widely used in evolutionary computation and machine learning, as we show by analyzing a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this dynamics converges to a global minimizer of the objective function in mean-field law for a vast class of functions under minimal assumptions on the initialization of the method. The proof in particular reveals how to leverage further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications, we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and compressed sensing, which en passant widen the scope of applications of CBO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源