论文标题

稳定电容匹配游戏

Stabilization of Capacitated Matching Games

论文作者

Gerstbrein, Matthew, Sanità, Laura, Verberk, Lucy

论文摘要

如果最大重量匹配的值等于最大重量分数匹配的值,则具有边缘加权,顶点载体的图形G被称为稳定。稳定的图表在表征流行组合游戏的稳定解决方案的存在方面起着关键作用,该解决方案涉及图表中的匹配结构,例如网络讨价还价游戏和合作匹配的游戏。 Vertex-Stabilizer问题要求计算最少数量的播放器(即,删除G的顶点),以确保此类游戏的稳定性。对于单位容量图,该问题已被证明可以在多项式时间中解决。如果我们强加以下限制,即要阻止的玩家一组不得与给定的G的指定最大匹配相交。 在这项工作中,我们在更一般的任意能力环境中调查了这些算法问题。我们表明,避免给定最大匹配的额外限制仍然可溶解了顶点稳定器问题。不同的是,在没有这种限制的情况下,与单位容量案例相比,顶点稳定器问题变得NP固定,甚至很难近似。 最后,在单位容量图中,图表的稳定性,网络讨价还价游戏的稳定解决方案的存在与存在合作匹配游戏的稳定解决方案之间存在等效性。我们表明,这种对等不扩展到电容的情况。

An edge-weighted, vertex-capacitated graph G is called stable if the value of a maximum-weight capacity-matching equals the value of a maximum-weight fractional capacity-matching. Stable graphs play a key role in characterizing the existence of stable solutions for popular combinatorial games that involve the structure of matchings in graphs, such as network bargaining games and cooperative matching games. The vertex-stabilizer problem asks to compute a minimum number of players to block (i.e., vertices of G to remove) in order to ensure stability for such games. The problem has been shown to be solvable in polynomial-time, for unit-capacity graphs. This stays true also if we impose the restriction that the set of players to block must not intersect with a given specified maximum matching of G. In this work, we investigate these algorithmic problems in the more general setting of arbitrary capacities. We show that the vertex-stabilizer problem with the additional restriction of avoiding a given maximum matching remains polynomial-time solvable. Differently, without this restriction, the vertex-stabilizer problem becomes NP-hard and even hard to approximate, in contrast to the unit-capacity case. Finally, in unit-capacity graphs there is an equivalence between the stability of a graph, existence of a stable solution for network bargaining games, and existence of a stable solution for cooperative matching games. We show that this equivalence does not extend to the capacitated case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源