论文标题
通过复制纸改善拥挤的对象检测
Improving Crowded Object Detection via Copy-Paste
论文作者
论文摘要
在类似物体之间重叠引起的拥挤是在2D视觉对象检测领域的无处不在的挑战。在本文中,我们首先强调了拥挤性问题的两个主要影响:1)IOU信心相关性干扰(ICD)和2)混乱的De deplication(CDD)。然后,我们探索从数据增强的角度来破解这些坚果的途径。首先,提出了一种特定的复制计划,以制作拥挤的场景。基于此操作,我们首先设计了一种“共识学习”方法,以进一步抵抗ICD问题,然后找出粘贴过程自然揭示了现场对象的伪“深度”,该物体可能可用于缓解CDD困境。这两种方法均来自仿制的魔法使用,而无需额外的手工标记费用。实验表明,我们的方法可以轻松地将典型的拥挤检测任务中最先进的检测器提高超过2%,而没有任何铃铛和哨声。此外,这项工作可以在拥挤的情况下胜过现有的数据增强策略。
Crowdedness caused by overlapping among similar objects is a ubiquitous challenge in the field of 2D visual object detection. In this paper, we first underline two main effects of the crowdedness issue: 1) IoU-confidence correlation disturbances (ICD) and 2) confused de-duplication (CDD). Then we explore a pathway of cracking these nuts from the perspective of data augmentation. Primarily, a particular copy-paste scheme is proposed towards making crowded scenes. Based on this operation, we first design a "consensus learning" method to further resist the ICD problem and then find out the pasting process naturally reveals a pseudo "depth" of object in the scene, which can be potentially used for alleviating CDD dilemma. Both methods are derived from magical using of the copy-pasting without extra cost for hand-labeling. Experiments show that our approach can easily improve the state-of-the-art detector in typical crowded detection task by more than 2% without any bells and whistles. Moreover, this work can outperform existing data augmentation strategies in crowded scenario.