论文标题
ADAPTDHM:多域CTR预测的自适应分布分层模型
AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction
论文作者
论文摘要
大规模的商业平台通常涉及多种业务领域,以实现各种业务策略,并期望其推荐系统同时为多个领域提供点击率(CTR)预测。现有的有前途且广泛使用的多域模型通过明确构建特定领域的网络来发现域关系,但是随着域的增加,计算和内存大大提高。为了降低计算复杂性,在工业应用中,手动将域与特定的业务策略分组是很常见的。但是,这种预定义的数据分配方式在很大程度上依赖于先验知识,并且可能忽略了每个域的基本数据分布,因此限制了模型的表示能力。关于上述问题,我们提出了一个优雅而灵活的多分布建模范式,称为自适应分布层次模型(ADAPTDHM),该模型是一个由聚类过程和分类过程组成的端到端优化层次结构。具体而言,我们设计了具有自定义动态路由机制的分配适应模块。该路由算法没有为预定义的数据分配引入先验知识,而是自适应地为每个样本提供了分布系数,以确定其属于哪个群集。每个群集对应于特定分布,因此模型可以充分捕获这些不同簇之间的共同点和区分。对公共和大型阿里巴巴工业数据集进行的广泛实验验证了AdaptDHM的有效性和效率:我们的模型可实现令人印象深刻的预测准确性,并且在培训阶段的时间成本比其他模型少50%以上。
Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.