论文标题

利用加强学习在科学工作流程中分配任务资源

Leveraging Reinforcement Learning for Task Resource Allocation in Scientific Workflows

论文作者

Bader, Jonathan, Zunker, Nicolas, Becker, Soeren, Kao, Odej

论文摘要

科学工作流程是按照指示的无环图(DAG)设计的,由多个依赖的任务定义组成。它们是通过大量数据执行的,通常会导致数千个具有异质计算要求和长时间时间的任务,即使是在集群基础架构上也是如此。为了优化工作流程的性能,需要为各自的任务提供足够的资源,例如CPU和内存。通常,工作流系统依赖于已知易于错误的用户资源估计值,并且可能导致过度处理或不足。虽然资源过度提供导致了很高的资源浪费,但欠缺可能会导致长时间甚至失败的任务。 在本文中,我们提出了两种基于梯度强盗和Q学习的不同强化学习方法,以通过选择合适的CPU和内存分配来最大程度地减少资源浪费。我们在众所周知的科学工作流管理系统NextFlow中提供了典型的实现,通过五个工作流来评估我们的方法,并将它们与默认资源配置和最先进的反馈循环基线进行比较。与默认配置相比,我们的加强学习方法显着减少了资源浪费。此外,与最先进的反馈回路相比,我们的方法还将分配的CPU小时减少了6.79%和24.53%。

Scientific workflows are designed as directed acyclic graphs (DAGs) and consist of multiple dependent task definitions. They are executed over a large amount of data, often resulting in thousands of tasks with heterogeneous compute requirements and long runtimes, even on cluster infrastructures. In order to optimize the workflow performance, enough resources, e.g., CPU and memory, need to be provisioned for the respective tasks. Typically, workflow systems rely on user resource estimates which are known to be highly error-prone and can result in over- or underprovisioning. While resource overprovisioning leads to high resource wastage, underprovisioning can result in long runtimes or even failed tasks. In this paper, we propose two different reinforcement learning approaches based on gradient bandits and Q-learning, respectively, in order to minimize resource wastage by selecting suitable CPU and memory allocations. We provide a prototypical implementation in the well-known scientific workflow management system Nextflow, evaluate our approaches with five workflows, and compare them against the default resource configurations and a state-of-the-art feedback loop baseline. The evaluation yields that our reinforcement learning approaches significantly reduce resource wastage compared to the default configuration. Further, our approaches also reduce the allocated CPU hours compared to the state-of-the-art feedback loop by 6.79% and 24.53%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源