论文标题
标准稳定的Horikawa表面
Standard stable Horikawa surfaces
论文作者
论文摘要
我们考虑稳定的紧凑型$ \ bar {\ mathfrak h} $ horikawa表面的Moduli空间,$ k_x^2 = 2p_g(x)-4 $。 When $K_X^2 =8\ell$ we show that the closures of the two components $\mathfrak H^{\mathrm I}$ and $\mathfrak H^{\mathrm {II}}$ of the Gieseker moduli space intersect, for $\ell>2$ in a divisor parametrising explicitly described semi-smooth surfaces. 随着$ k_x^2 $的增长,我们在稳定表面的模量空间的同一连接组件中发现了越来越多的一般不重还原的不可还原组件。
We consider the stable compactification $\bar {\mathfrak H}$ of the moduli space of Horikawa surfaces with $K_X^2 = 2p_g(X) -4$. When $K_X^2 =8\ell$ we show that the closures of the two components $\mathfrak H^{\mathrm I}$ and $\mathfrak H^{\mathrm {II}}$ of the Gieseker moduli space intersect, for $\ell>2$ in a divisor parametrising explicitly described semi-smooth surfaces. With growing $K_X^2$ we find an increasing number of generically non-reduced irreducible components in the same connected component of the moduli space of stable surfaces.