论文标题

PHAST:物理意识,可扩展和特定于任务的GNNS,用于加速催化剂设计

PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design

论文作者

Duval, Alexandre, Schmidt, Victor, Miret, Santiago, Bengio, Yoshua, Hernández-García, Alex, Rolnick, David

论文摘要

缓解气候危机需要快速向低碳能量过渡。催化剂材料在众多工业过程中涉及的电化学反应中起着至关重要的作用,例如可再生能源存储和电控合成。为了减少在此类活动上花费的能量,我们必须迅速发现更有效的催化剂来推动电化学反应。机器学习(ML)具有从大量数据,加速电催化剂设计中有效建模材料特性的潜力。 OC20数据集的开放催化剂项目已构建到最后。但是,在OC20上训练的ML模型仍然既不可扩展,也不足够准确。在本文中,我们提出了适用于大多数架构的特定任务创新,从而提高了计算效率和准确性。这包括(1)图创建步骤,(2)原子表示,(3)能量预测头和(4)力预测头的改进。我们描述了这些贡献,称为PHAST,并在多个架构上彻底评估它们。总体而言,PHAST将能源MAE提高了4至42 $ \%$,而将计算时间除以3至8 $ \ times $,具体取决于目标任务/型号。 PHAST还可以进行CPU培训,在高度平行的设置中导致40美元$ \ times $加速。 Python软件包:\ url {https://phast.readthedocs.io}。

Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electrochemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42$\%$ while dividing compute time by 3 to 8$\times$ depending on the targeted task/model. PhAST also enables CPU training, leading to 40$\times$ speedups in highly parallelized settings. Python package: \url{https://phast.readthedocs.io}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源