论文标题

Slugbot,一种由Aplysia启发的机器人Grasper,用于研究控制

SLUGBOT, an Aplysia-inspired Robotic Grasper for Studying Control

论文作者

Dai, Kevin, Sukhnandan, Ravesh, Bennington, Michael, Whirley, Karen, Bao, Ryan, Li, Lu, Gill, Jeffrey P., Chiel, Hillel J., Webster-Wood, Victoria A.

论文摘要

生活系统可以使用单个外围人执行各种任务并适应动态环境。通过使用神经电路可以适应地控制可重新配置的肌肉组织,可以实现这种多功能性。当前的机器人系统难以灵活地适应非结构​​化的环境。通过模仿生物体中的神经力学耦合,机器人系统可能会实现更大的自主权。 Sea Slug $ \ textit {Aplysia californica's} $喂养设备或颊质的可拖动神经力学使其成为将神经力学原理应用于软机器人的理想候选者。在这项工作中,机器人的grasper旨在模仿$ \ textit {aplysia} $喂食设备的特定形态。其中包括使用类似于生物肌肉的软致动器,可变形的抓握表面以及类似的肌肉结构。然后,对先前开发的布尔神经控制器进行了调整,以控制这种软机器人系统。该机器人能够通过周期摄入塑料管来定性复制吞咽行为。该机器人的牙托车的归一化平移和旋转运动学遵循了观察到$ \ textit {in Vivo} $的概况,尽管有形态上的差异。这将带来$ \ textIt {aplysia} $ - 灵感的控制$ \ textit {in Roboto} $一个步骤,更接近多功能神经控制模式$ \ textit {in Vivo} $和$ \ textit {in Silico} $。未来的添加可能会改善Slugbot作为神经力学研究平台的生存能力。

Living systems can use a single periphery to perform a variety of tasks and adapt to a dynamic environment. This multifunctionality is achieved through the use of neural circuitry that adaptively controls the reconfigurable musculature. Current robotic systems struggle to flexibly adapt to unstructured environments. Through mimicry of the neuromechanical coupling seen in living organisms, robotic systems could potentially achieve greater autonomy. The tractable neuromechanics of the sea slug $\textit{Aplysia californica's}$ feeding apparatus, or buccal mass, make it an ideal candidate for applying neuromechanical principles to the control of a soft robot. In this work, a robotic grasper was designed to mimic specific morphology of the $\textit{Aplysia}$ feeding apparatus. These include the use of soft actuators akin to biological muscle, a deformable grasping surface, and a similar muscular architecture. A previously developed Boolean neural controller was then adapted for the control of this soft robotic system. The robot was capable of qualitatively replicating swallowing behavior by cyclically ingesting a plastic tube. The robot's normalized translational and rotational kinematics of the odontophore followed profiles observed $\textit{in vivo}$ despite morphological differences. This brings $\textit{Aplysia}$-inspired control $\textit{in roboto}$ one step closer to multifunctional neural control schema $\textit{in vivo}$ and $\textit{in silico}$. Future additions may improve SLUGBOT's viability as a neuromechanical research platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源