论文标题
高感知质量JPEG通过后抽样解码
High-Perceptual Quality JPEG Decoding via Posterior Sampling
论文作者
论文摘要
JPEG可以说是最受欢迎的图像编码格式,通过可能会造成视觉伪像降解的有损量化来达到高压缩比。多年来,人们对去除这些伪像的许多尝试进行了构想,其中大多数是使用确定性的后加工算法来优化某些失真度量的方法(例如,PSNR,SSIM)。在本文中,我们提出了用于JPEG伪影校正的不同范式:我们的方法是随机的,我们目标的目标是高感知质量 - 努力获得尖锐,详细且视觉上令人愉悦的重建图像,同时与压缩输入保持一致。这些目标是通过训练随机条件发生器(以压缩输入为条件)来实现的,并伴随着理论上有充分的损失项,从而导致了后验分布的采样器。我们的解决方案为具有完美一致性的给定输入提供了一套合理且快速的重建。我们演示了我们计划在FFHQ和Imagenet数据集上对各种替代方法的独特属性及其优势。
JPEG is arguably the most popular image coding format, achieving high compression ratios via lossy quantization that may create visual artifacts degradation. Numerous attempts to remove these artifacts were conceived over the years, and common to most of these is the use of deterministic post-processing algorithms that optimize some distortion measure (e.g., PSNR, SSIM). In this paper we propose a different paradigm for JPEG artifact correction: Our method is stochastic, and the objective we target is high perceptual quality -- striving to obtain sharp, detailed and visually pleasing reconstructed images, while being consistent with the compressed input. These goals are achieved by training a stochastic conditional generator (conditioned on the compressed input), accompanied by a theoretically well-founded loss term, resulting in a sampler from the posterior distribution. Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency. We demonstrate our scheme's unique properties and its superiority to a variety of alternative methods on the FFHQ and ImageNet datasets.