论文标题
公制的植物大黄蜂重力中的真空解决方案
Vacuum solution within a metric-affine bumblebee gravity
论文作者
论文摘要
我们考虑了洛伦兹侵略系数$ u $和$ s^{μν} $的标准模型扩展的重力部门的度量范围扩展。获得的一般结果已应用于称为公制的特定模型 - 牛油大黄蜂重力。找到了类似Schwarzschild的解决方案,结合了Lorentz对称性通过系数$ x =ξb^2 $的效果。此外,在这种背景下已经完成了对颗粒的大地测量轨迹的完整研究,强调了与一般相对论的不同。我们还计算了水星的围栏的进步和在弱场近似背景下光的偏转,并验证是否存在两个归因于洛伦兹对称性破裂的新贡献。作为现象学应用,我们将理论结果与观察数据进行比较,以估算系数$ x $。
We consider a metric-affine extension to the gravitational sector of the Standard-Model Extension for the Lorentz-violating coefficients $u$ and $s^{μν}$. The general results, which are applied to a specific model called metric--affine bumblebee gravity, are obtained. A Schwarzschild-like solution, incorporating effects of the Lorentz symmetry breaking through coefficient $X=ξb^2$, is found. Furthermore, a complete study of the geodesics trajectories of particles has been accomplished in this background, emphasizing the departure from general relativity. We also compute the advance of Mercury's perihelion and the deflection of light within the context of the weak field approximation, and we verify that there exist two new contributions ascribed to the Lorentz symmetry breaking. As a phenomenological application, we compare our theoretical results with observational data in order to estimate the coefficient $X$.