论文标题

从节点互动到HOP交互:新的有效且可扩展的图形学习范式

From Node Interaction to Hop Interaction: New Effective and Scalable Graph Learning Paradigm

论文作者

Chen, Jie, Li, Zilong, Zhu, Yin, Zhang, Junping, Pu, Jian

论文摘要

现有的图形神经网络(GNNS)遵循消息通知机制,该机制在迭代中进行信息相互作用。尽管已经取得了很大进展,但这种节点相互作用范例仍然具有以下限制。首先,自迅速扩展的邻居之间的节点相互作用以来,可伸缩性限制排除了GNN在大规模工业环境中的广泛应用。其次,过度平滑的问题限制了节点的歧视能力,即不同类别的节点表示后,在重复的节点相互作用后将收敛到无法区分。在这项工作中,我们提出了一种新型的Hop互动范式,以同时解决这些局限性。核心想法是将节点之间的交互目标转换为每个节点内部的预处理多跳功能。我们设计了一个简单而有效的HopgNN框架,可以轻松利用现有的GNN来实现Hop互动。此外,我们提出了一个多任务学习策略,具有一个自我监督的学习目标,以增强Hopgnn。我们对图形的域,尺度和平滑度进行了12个基准数据集进行了广泛的实验。实验结果表明,我们的方法在保持高伸缩性和效率的同时获得了卓越的性能。该代码在https://github.com/jc-202/hopgnn上。

Existing Graph Neural Networks (GNNs) follow the message-passing mechanism that conducts information interaction among nodes iteratively. While considerable progress has been made, such node interaction paradigms still have the following limitation. First, the scalability limitation precludes the broad application of GNNs in large-scale industrial settings since the node interaction among rapidly expanding neighbors incurs high computation and memory costs. Second, the over-smoothing problem restricts the discrimination ability of nodes, i.e., node representations of different classes will converge to indistinguishable after repeated node interactions. In this work, we propose a novel hop interaction paradigm to address these limitations simultaneously. The core idea is to convert the interaction target among nodes to pre-processed multi-hop features inside each node. We design a simple yet effective HopGNN framework that can easily utilize existing GNNs to achieve hop interaction. Furthermore, we propose a multi-task learning strategy with a self-supervised learning objective to enhance HopGNN. We conduct extensive experiments on 12 benchmark datasets in a wide range of domains, scales, and smoothness of graphs. Experimental results show that our methods achieve superior performance while maintaining high scalability and efficiency. The code is at https://github.com/JC-202/HopGNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源