论文标题

Eisenstein系列和Kudla-Millson Theta Lift的对角线限制

Diagonal restriction of Eisenstein series and Kudla-Millson theta lift

论文作者

Branchereau, Romain

论文摘要

我们考虑了与签名$(n,n)$相关的二次空间相关的Kudla-Millson Theta系列。通过将“远见”论点与siegel-weil公式相结合,我们表明其(正则化)沿着与完全真实的$ n $的圆环不可或缺的积分是Eisenstein系列的对角线限制。它使我们能够将对角线限制的傅立叶系数表示为相交数字,这将达尔蒙pozzi-vonk的结果推广到完全真实的领域。

We consider the Kudla-Millson theta series associated to a quadratic space of signature $(N,N)$. By combining a `see-saw' argument with the Siegel-Weil formula, we show that its (regularized) integral along a torus attached to a totally real field of degree $N$ is the diagonal restriction of an Eisenstein series. It allows us to express the Fourier coefficients of the diagonal restriction as intersection numbers, which generalizes a result of Darmon-Pozzi-Vonk to totally real fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源