论文标题
部分可观测时空混沌系统的无模型预测
Immersion and Invariance-based Coding for Privacy in Remote Anomaly Detection
论文作者
论文摘要
我们提出了一个框架,用于设计编码机制,该机制允许以隐私的方式远程操作异常检测器。我们考虑以下问题设置。远程站旨在基于通过通信网络传输的系统输入输出信号识别异常。但是,不希望披露系统操作的真实数据,因为它可以用于推断私人信息。为了防止对手在网络或远程站本身上窃听以访问私人数据,我们建议使用隐私的编码方案来扭曲传输信号。在下一步中,我们设计了一个新的异常检测器,该检测器在扭曲的信号上运行并产生扭曲的诊断信号,并允许从失真的信号中提取真正的诊断数据,而不会出错。所提出的方案建立在控制理论中的矩阵加密和系统浸入和不变性(I&i)工具的协同作用上。这个想法是将异常检测器浸入高维系统(所谓的目标系统)中。目标系统的动力学设计为:原始异常检测器的轨迹被浸入/嵌入其轨迹中,可用于随机编码的输入输出信号,并生成原始异常检测器警报信号的编码版本,这些版本被解码以在用户端提取原始警报。我们表明,所提出的隐私保护方案提供了与基于标准的卡尔曼滤波器基于卡方的异常检测器相同的异常检测性能,同时却没有揭示有关系统数据的信息。
We present a framework for the design of coding mechanisms that allow remotely operating anomaly detectors in a privacy-preserving manner. We consider the following problem setup. A remote station seeks to identify anomalies based on system input-output signals transmitted over communication networks. However, it is not desired to disclose true data of the system operation as it can be used to infer private information. To prevent adversaries from eavesdropping on the network or at the remote station itself to access private data, we propose a privacy-preserving coding scheme to distort signals before transmission. As a next step, we design a new anomaly detector that runs on distorted signals and produces distorted diagnostics signals, and a decoding scheme that allows extracting true diagnostics data from distorted signals without error. The proposed scheme is built on the synergy of matrix encryption and system Immersion and Invariance (I&I) tools from control theory. The idea is to immerse the anomaly detector into a higher-dimensional system (the so-called target system). The dynamics of the target system is designed such that: the trajectories of the original anomaly detector are immersed/embedded in its trajectories, it works on randomly encoded input-output signals, and produces an encoded version of the original anomaly detector alarm signals, which are decoded to extract the original alarm at the user side. We show that the proposed privacy-preserving scheme provides the same anomaly detection performance as standard Kalman filter-based chi-squared anomaly detectors while revealing no information about system data.