论文标题

部分可观测时空混沌系统的无模型预测

SLLEN: Semantic-aware Low-light Image Enhancement Network

论文作者

Ju, Mingye, Chen, Chuheng, Guo, Charles A., Pan, Jinshan, Tang, Jinhui, Tao, Dacheng

论文摘要

如何有效探索语义特征对于低光图像增强(LLE)至关重要。现有方法通常利用仅从高级语义分割(SS)网络产生的输出中得出的语义功能。但是,如果未准确估计输出,它将影响高级语义特征(HSF)提取,因此会干扰LLE。为此,我们开发了一个简单有效的语义意识LLE网络(SSLEN),该网络由LLE主网(LLENN)和SS辅助网络(SSAN)组成。在Sllen中,LLEMN将从SSAN的中间层提取的随机中间嵌入特征(IEF)和HSF一起提取的信息与统一的框架一起提取的信息。 SSAN旨在作为提供HSF和IEF的SS角色。此外,得益于LLEMN和SSAN之间的共同编码器,我们进一步提出了一种交替的培训机制,以促进它们之间的协作。与当前可用的方法不同,拟议的Sllen能够完全利用语义信息,例如IEF,HSF和SS数据集,以协助LLE,从而导致更有希望的增强性能。拟议的Sllen和其他最先进的技术之间的比较表明,Sllen在LLE质量上的优越性优于所有可比替代方案。

How to effectively explore semantic feature is vital for low-light image enhancement (LLE). Existing methods usually utilize the semantic feature that is only drawn from the output produced by high-level semantic segmentation (SS) network. However, if the output is not accurately estimated, it would affect the high-level semantic feature (HSF) extraction, which accordingly interferes with LLE. To this end, we develop a simple and effective semantic-aware LLE network (SSLEN) composed of a LLE main-network (LLEmN) and a SS auxiliary-network (SSaN). In SLLEN, LLEmN integrates the random intermediate embedding feature (IEF), i.e., the information extracted from the intermediate layer of SSaN, together with the HSF into a unified framework for better LLE. SSaN is designed to act as a SS role to provide HSF and IEF. Moreover, thanks to a shared encoder between LLEmN and SSaN, we further propose an alternating training mechanism to facilitate the collaboration between them. Unlike currently available approaches, the proposed SLLEN is able to fully lever the semantic information, e.g., IEF, HSF, and SS dataset, to assist LLE, thereby leading to a more promising enhancement performance. Comparisons between the proposed SLLEN and other state-of-the-art techniques demonstrate the superiority of SLLEN with respect to LLE quality over all the comparable alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源