论文标题
双极l^p-hardy型不平等中的最佳常数
Best constants in bipolar L^p-Hardy-type Inequalities
论文作者
论文摘要
在这项工作中,我们证明,在双极潜力的情况下,多极性强的不等式和$ p \ geq 2 $的敏锐$ l^p $版本是由Cazacu(CCM 2016)和Cazacu&Zuazua首次开发的,Cazacu&Zuazua(对PDES的相位空间分析中的研究中,2013年的相位空间分析中)。我们的结果很清晰,能量空间确实存在最小化器。与线性案例$ p = 2 $相比,在p-laplacian $-Δ_p$ the the $ p = 2 $的$ p> 2 $时会出现新功能。
In this work we prove sharp $L^p$ versions of multipolar Hardy inequalities in the case of a bipolar potential and $p\geq 2$, which were first developed in the case $p=2$ by Cazacu (CCM 2016) and Cazacu&Zuazua (Studies in phase space analysis with applications to PDEs, 2013). Our results are sharp and minimizers do exist in the energy space. New features appear when $p>2$ compared to the linear case $p=2$ at the level of criticality of the p-Laplacian $-Δ_p$ perturbed by a singular Hardy bipolar potential.