论文标题

普拉萨德关于偶发性的猜想

Prasad's Conjecture about dualizing involutions

论文作者

Arote, Prashant, Mishra, Manish

论文摘要

令$ g $为一个有限字段$ \ mathbb {f} _q $,带有相应的frobenius $ f $的连接还原组。令D. Prasad在假设$ 2 \ mathrm {h}^1(f,z(g))= 0 $下定义的双重性相关性,其中$ z(g)$表示$ g $的中心。我们表明,对于$ g^f $的每个不可约的字符$ρ$ $ g^f $,$ 〜b $ tak $ρ$在其双$ρ^{\ vee} $上,并且仅当适合约旦的角色分解时,相关的单位单位$u_ρ$具有Frobenius eigenius eigenius eignius eignius eignius eigrare $ $ $ $ $ $ $ \ $ $ \ g g g g g g g g g g g g g g g g g y he and。满足$ 2 \ mathrm {h}^1(f,z(g))= 0 $,然后二重性差异$ b $ tak $ρ$ to dual $ρ^{\ vee} $ for $ g^f $ $ g^f $。我们的结果解决了D. prasad的猜想的有限组。

Let $G$ be a connected reductive group defined over a finite field $\mathbb{F}_q$ with corresponding Frobenius $F$. Let $ι_G$ denote the duality involution defined by D. Prasad under the hypothesis $2\mathrm{H}^1(F,Z(G))=0$, where $Z(G)$ denotes the center of $G$. We show that for each irreducible character $ρ$ of $G^F$, the involution $ι_G$ takes $ρ$ to its dual $ρ^{\vee}$ if and only if for a suitable Jordan decomposition of characters, an associated unipotent character $u_ρ$ has Frobenius eigenvalues $\pm$ 1. As a corollary, we obtain that if $G$ has no exceptional factors and satisfies $2\mathrm{H}^1(F,Z(G))=0$, then the duality involution $ι_G$ takes $ρ$ to its dual $ρ^{\vee}$ for each irreducible character $ρ$ of $G^F$. Our results resolve a finite group counterpart of a conjecture of D.~Prasad.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源