论文标题
基于神经网络的分布约束学习方法,用于混合企业的随机优化
A Neural Network-Based Distributional Constraint Learning Methodology for Mixed-Integer Stochastic Optimization
论文作者
论文摘要
机器学习方法的使用有助于改善不同领域的决策。特别是,桥接预测(机器学习模型)和处方(优化问题)的想法在科学界引起了人们的关注。解决这一权衡的主要思想之一是所谓的约束学习(CL)方法,其中机器学习模型的结构可以作为一组构造的约束,该结构嵌入了优化问题中,建立了直接决策变量$ x $与响应变量$ y $之间的关系。但是,大多数CL方法都集中在为某个变量进行点预测,而不是考虑建模过程中面临的统计和外部不确定性。在本文中,我们扩展了CL方法,以处理响应变量$ y $中的不确定性。新颖的分布约束学习(DCL)方法学利用了基于零件的基于神经网络的模型来估计$ y $的条件分布的参数(取决于$ x $的决策$ x $和上下文信息),可以将其嵌入到混合构成优化问题中。特别是,我们通过使用一组线性约束来从估计分布中抽样随机值来提出随机优化问题。从这个意义上讲,DCL既结合了神经网络方法的高预测性能,也结合了产生场景以说明在可拖动优化模型中不确定性的可能性。在电力系统的背景下,在现实世界问题中测试了所提出的方法的行为,在电力系统的背景下,虚拟发电厂试图优化其操作,但要遵守不同形式的不确定性,并且具有价格响应性的消费者。
The use of machine learning methods helps to improve decision making in different fields. In particular, the idea of bridging predictions (machine learning models) and prescriptions (optimization problems) is gaining attention within the scientific community. One of the main ideas to address this trade-off is the so-called Constraint Learning (CL) methodology, where the structures of the machine learning model can be treated as a set of constraints to be embedded within the optimization problem, establishing the relationship between a direct decision variable $x$ and a response variable $y$. However, most CL approaches have focused on making point predictions for a certain variable, not taking into account the statistical and external uncertainty faced in the modeling process. In this paper, we extend the CL methodology to deal with uncertainty in the response variable $y$. The novel Distributional Constraint Learning (DCL) methodology makes use of a piece-wise linearizable neural network-based model to estimate the parameters of the conditional distribution of $y$ (dependent on decisions $x$ and contextual information), which can be embedded within mixed-integer optimization problems. In particular, we formulate a stochastic optimization problem by sampling random values from the estimated distribution by using a linear set of constraints. In this sense, DCL combines both the high predictive performance of the neural network method and the possibility of generating scenarios to account for uncertainty within a tractable optimization model. The behavior of the proposed methodology is tested in a real-world problem in the context of electricity systems, where a Virtual Power Plant seeks to optimize its operation, subject to different forms of uncertainty, and with price-responsive consumers.