论文标题

具有多视图表示学习扩展的广义特征

A Generalized EigenGame with Extensions to Multiview Representation Learning

论文作者

Chapman, James, Aguila, Ana Lawry, Wells, Lennie

论文摘要

广义特征值问题(GEPS)包括一系列有趣的维度降低方法。开发有效的随机方法解决这些问题将使它们可以扩展到较大的数据集。规范相关分析(CCA)是降低维度的GEP的一个示例,该示例发现了两个或多个数据视图的问题。 CCA的深度学习扩展需要大型的迷你批量,因此在随机环境中以实现良好的性能,这限制了其在实践中的应用。受HEBBIAN算法的启发,我们开发了一种解决随机GEP的方法,其中所有约束都由Lagrange乘数轻轻地执行。然后,通过考虑该拉格朗日功能的积分,其伪独立性,并受到最新的主要组件分析和GEP作为具有可靠公用事业的游戏的启发,我们开发了一种启发游戏理论的方法来解决GEPS。我们表明,我们的方法共享了线性案例的Hebbian和Game理论方法的许多理论基础,但是我们的方法允许将其扩展到一般功能近似器(如神经网络),例如某些GEPS,用于降低维度的某些GEP,包括CCA,这意味着我们的方法可用于深度多图表表示。我们证明了使用规范多视图数据集在随机设置中求解GEP的有效性,并演示了优化深CCA的最新性能。

Generalized Eigenvalue Problems (GEPs) encompass a range of interesting dimensionality reduction methods. Development of efficient stochastic approaches to these problems would allow them to scale to larger datasets. Canonical Correlation Analysis (CCA) is one example of a GEP for dimensionality reduction which has found extensive use in problems with two or more views of the data. Deep learning extensions of CCA require large mini-batch sizes, and therefore large memory consumption, in the stochastic setting to achieve good performance and this has limited its application in practice. Inspired by the Generalized Hebbian Algorithm, we develop an approach to solving stochastic GEPs in which all constraints are softly enforced by Lagrange multipliers. Then by considering the integral of this Lagrangian function, its pseudo-utility, and inspired by recent formulations of Principal Components Analysis and GEPs as games with differentiable utilities, we develop a game-theory inspired approach to solving GEPs. We show that our approaches share much of the theoretical grounding of the previous Hebbian and game theoretic approaches for the linear case but our method permits extension to general function approximators like neural networks for certain GEPs for dimensionality reduction including CCA which means our method can be used for deep multiview representation learning. We demonstrate the effectiveness of our method for solving GEPs in the stochastic setting using canonical multiview datasets and demonstrate state-of-the-art performance for optimizing Deep CCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源