论文标题

DESTSEG:分割指导deno deNo为异常检测的学生教师

DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection

论文作者

Zhang, Xuan, Li, Shiyu, Li, Xi, Huang, Ping, Shan, Jiulong, Chen, Ting

论文摘要

视觉异常检测是计算机视觉中的一个重要问题,通常是作为单级分类和分割任务提出的。事实证明,学生教师(S-T)框架有效地解决了这一挑战。但是,先前基于S-T的工作仅在正常数据和融合的多层次信息上进行经验应用约束。在这项研究中,我们提出了一个名为Destseg的改进模型,该模型集成了预先训练的教师网络,一个deno的学生编码器编码器,并将分割网络纳入一个框架。首先,为了加强对异常数据的限制,我们引入了一个授予程序,该程序允许学生网络学习更多强大的表示形式。从合成损坏的普通图像中,我们训练学生网络以匹配同一图像的教师网络功能而没有损坏。其次,为了自适应地融合多级S-T功能,我们通过合成异常掩模的丰富监督训练分割网络,从而实现了实质性的改进。关于工业检查基准数据集的实验表明,我们的方法可实现最先进的性能,图像级AUC为98.6%,像素级平均精度为75.8%,实例级别平均精度为76.4%。

Visual anomaly detection, an important problem in computer vision, is usually formulated as a one-class classification and segmentation task. The student-teacher (S-T) framework has proved to be effective in solving this challenge. However, previous works based on S-T only empirically applied constraints on normal data and fused multi-level information. In this study, we propose an improved model called DeSTSeg, which integrates a pre-trained teacher network, a denoising student encoder-decoder, and a segmentation network into one framework. First, to strengthen the constraints on anomalous data, we introduce a denoising procedure that allows the student network to learn more robust representations. From synthetically corrupted normal images, we train the student network to match the teacher network feature of the same images without corruption. Second, to fuse the multi-level S-T features adaptively, we train a segmentation network with rich supervision from synthetic anomaly masks, achieving a substantial performance improvement. Experiments on the industrial inspection benchmark dataset demonstrate that our method achieves state-of-the-art performance, 98.6% on image-level AUC, 75.8% on pixel-level average precision, and 76.4% on instance-level average precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源