论文标题

部分可观测时空混沌系统的无模型预测

Diffusion Denoising Process for Perceptron Bias in Out-of-distribution Detection

论文作者

Liu, Luping, Ren, Yi, Cheng, Xize, Huang, Rongjie, Li, Chongxuan, Zhao, Zhou

论文摘要

分布(OOD)检测是确保深度学习的可靠性和安全性的关键任务。当前,鉴别器模型在这方面的表现优于其他方法。但是,鉴别器模型使用的功能提取过程遭受关键信息的丢失,留出了不良情况和恶意攻击的空间。在本文中,我们介绍了一个新的感知偏差假设,该假设表明歧视模型对输入的某些特征更敏感,从而导致过度自信问题。为了解决这个问题,我们提出了一个新颖的框架,该框架结合了歧视因子和生成模型,并将扩散模型(DMS)整合到OOD检测中。我们证明,DMS的扩散去核过程(DDP)是一种新型的不对称插值形式,非常适合增强输入并减轻过度自信问题。 OOD数据的鉴别模型特征在DDP下显示出急剧变化,我们将这种变化的规范用作指标得分。我们在CIFAR10,CIFAR100和Imagenet上的实验表明,我们的方法的表现优于SOTA接近。值得注意的是,对于具有挑战性的IND成像网和OOD物种数据集,我们的方法达到了85.7的AUROC,超过了先前的SOTA方法的分数为77.4。我们的实现可在\ url {https://github.com/luping-liu/diffood}上获得。

Out-of-distribution (OOD) detection is a crucial task for ensuring the reliability and safety of deep learning. Currently, discriminator models outperform other methods in this regard. However, the feature extraction process used by discriminator models suffers from the loss of critical information, leaving room for bad cases and malicious attacks. In this paper, we introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem. To address this issue, we propose a novel framework that combines discriminator and generation models and integrates diffusion models (DMs) into OOD detection. We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric interpolation, which is well-suited to enhance the input and mitigate the overconfidence problem. The discriminator model features of OOD data exhibit sharp changes under DDP, and we utilize the norm of this change as the indicator score. Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches. Notably, for the challenging InD ImageNet and OOD species datasets, our method achieves an AUROC of 85.7, surpassing the previous SOTA method's score of 77.4. Our implementation is available at \url{https://github.com/luping-liu/DiffOOD}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源