论文标题

部分可观测时空混沌系统的无模型预测

OSDG 2.0: a multilingual tool for classifying text data by UN Sustainable Development Goals (SDGs)

论文作者

Pukelis, Lukas, Bautista-Puig, Nuria, Statulevičiūtė, Gustė, Stančiauskas, Vilius, Dikmener, Gokhan, Akylbekova, Dina

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Despite concrete indicators and targets, monitoring the progress of the UN Sustainable Development Goals (SDGs) remains a challenge, given the many different actors, initiatives, and institutions involved. OSDG, an open-source classification tool aims to help navigate the SDG related ambiguities through a simple and easy to use application. The tool allows to map and connect activities to the SDGs by identifying SDG -relevant content in any text. This paper presents OSDG 2.0, a new iteration of the partnership's work, which marks a significant improvement in the tool's methodology, as well as support for content in 15 languages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源