论文标题
光学奇异性动力学和自旋轨道相互作用是由于在平面介电界面上反射的正常无效光束引起的
Optical Singularity Dynamics and Spin-Orbit Interaction due to a Normal-Incident Optical Beam Reflected at a Plane Dielectric Interface
论文作者
论文摘要
在平面各向同性介电界面上光束正常发射率和反射的变态病例,这是对菲雷赛内系数的动量空间变化而言,这是方差的对称性,而不是基本偏振的基本偏振率,要求对事件的偏振率,要求对事件的偏振率进行分析。在本文中,我们使用反射和透射系数形式主义来得出正常反向反向束的精确场表达。确切的字段信息的可用性允许对系统参数的控制变化,从而导致了迄今为止在文献中意外的相位和极化奇异性动态。我们在模拟系统中详细探讨了这些动态,并通过使用适当的设置实验验证它们。然后,我们使用Barnett的形式主义来确定相关的轨道角动量(OAM)通量,从而导致系统中自旋轨道相互作用(SOI)的微妙解释和数学表征。因此,我们的工作代表了平面介电界面上最基本的电磁反射/传输问题的非平凡统一,以及在OAM Flux和SOI方面的理解,光学奇异性动力学的新兴领域。正常的 - 重新反射几何形状尤其适合应用,预计这些束场现象将在界面表征,粒子旋转/操纵和其他纳米光学过程中应用。
The degenerate case of normal incidence and reflection of an optical beam (both paraxial and non-paraxial) at a plane isotropic dielectric interface, which is azimuthally symmetric in terms of the momentum-spatial variation of Fresnel coefficients but not in terms of the fundamental polarization inhomogeneity of the incident field, requires in-depth analyses. In this paper, we use the reflection and transmission coefficient matrix formalism to derive an exact field expression of a normal-reflected diverging beam. The availability of the exact field information allows controlled variations of the system parameters, leading to significant dynamics of phase and polarization singularities hitherto unanticipated in the literature. We carry out a detailed exploration of these dynamics in our simulated system, and also verify them experimentally by using an appropriate setup. We then use Barnett's formalism to determine the associated orbital angular momentum (OAM) fluxes, leading to a subtle interpretation and mathematical characterization of spin-orbit interaction (SOI) in the system. Our work thus represents a non-trivial unification of the most fundamental electromagnetic reflection/transmission problem at a plane dielectric interface and the emerging areas of optical singularity dynamics with their understanding in terms of OAM flux and SOI. The normal-incidence--retro-reflection geometry being especially amenable to applications, these beam-field phenomena are anticipated to have applications in interface characterization, particle rotation/manipulation and other nano-optical processes.