论文标题

stglow:一个基于流动的生成框架,具有双图形器,用于行人轨迹预测

STGlow: A Flow-based Generative Framework with Dual Graphormer for Pedestrian Trajectory Prediction

论文作者

Liang, Rongqin, Li, Yuanman, Zhou, Jiantao, Li, Xia

论文摘要

行人轨迹预测任务是智能系统的重要组成部分。它的应用包括但不限于自动驾驶,机器人导航和监测系统的异常检测。由于运动行为的多样性和行人之间复杂的社会互动,准确地预测他们的未来轨迹是具有挑战性的。现有的方法通常采用gan或cvaes来产生各种轨迹。但是,基于GAN的方法不会在潜在空间中直接建模数据,这可能使它们无法对基础数据分布获得全力支持。基于CVAE的方法优化了对数的观测的下限,这可能会导致学习分布偏离基础分布。上述限制使现有方法通常会产生高度偏见或不准确的轨迹。在本文中,我们提出了一种基于生成流的新型框架,该框架具有双重图形器,用于行人轨迹预测(Stglow)。与以前的方法不同,我们的方法可以通过优化精确的对数可能的运动行为行为来对基础数据分布进行建模。此外,我们的方法具有模拟人类运动行为进化的明确物理含义。流的正向过程逐渐将复杂的运动行为降低为简单行为,而其反向过程则代表了简单行为向复杂的运动行为的演变。此外,我们引入了与图形结构相结合的双图形器,以更充分地对时间依赖性和相互空间相互作用进行建模。几种基准的实验结果表明,与以前的最新方法相比,我们的方法的性能要好得多。

The pedestrian trajectory prediction task is an essential component of intelligent systems. Its applications include but are not limited to autonomous driving, robot navigation, and anomaly detection of monitoring systems. Due to the diversity of motion behaviors and the complex social interactions among pedestrians, accurately forecasting their future trajectory is challenging. Existing approaches commonly adopt GANs or CVAEs to generate diverse trajectories. However, GAN-based methods do not directly model data in a latent space, which may make them fail to have full support over the underlying data distribution; CVAE-based methods optimize a lower bound on the log-likelihood of observations, which may cause the learned distribution to deviate from the underlying distribution. The above limitations make existing approaches often generate highly biased or inaccurate trajectories. In this paper, we propose a novel generative flow based framework with dual graphormer for pedestrian trajectory prediction (STGlow). Different from previous approaches, our method can more precisely model the underlying data distribution by optimizing the exact log-likelihood of motion behaviors. Besides, our method has clear physical meanings for simulating the evolution of human motion behaviors. The forward process of the flow gradually degrades complex motion behavior into simple behavior, while its reverse process represents the evolution of simple behavior into complex motion behavior. Further, we introduce a dual graphormer combining with the graph structure to more adequately model the temporal dependencies and the mutual spatial interactions. Experimental results on several benchmarks demonstrate that our method achieves much better performance compared to previous state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源