论文标题

纠缠动态和古典复杂性

Entanglement dynamics and classical complexity

论文作者

Wang, Jiaozi, Dietz, Barbara, Rosa, Dario, Benenti, Giuliano

论文摘要

我们研究了从可分离的连贯状态开始的两体相互作用系统的纠缠动力学生成。我们分析表明,在准经典制度中,可以简单地通过基础经典动态来计算纠缠生长速率。此外,该速率由Kolmogorov-Sinai熵给出,该熵表征了经典运动的动态复杂性。我们的结果通过数值模拟在耦合旋转器模型上的数字模拟进行了说明,并在准经典方向上建立了纠缠,纯粹的量子现象和经典复杂性之间的联系。

We study the dynamical generation of entanglement for a two-body interacting system, starting from a separable coherent state. We show analytically that in the quasiclassical regime the entanglement growth rate can be simply computed by means of the underlying classical dynamics. Furthermore, this rate is given by the Kolmogorov-Sinai entropy, which characterizes dynamical complexity of classical motion. Our results, illustrated by numerical simulations on a model of coupled rotators, establish in the quasiclassical regime a link between the generation of entanglement, a purely quantum phenomenon, and classical complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源