论文标题
部分可观测时空混沌系统的无模型预测
Optimal decay rate for the generalized Oldroyd-B model with only stress tensor diffusion in $\mathbb{R}^2$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we are concerned with optimal decay rate for the 2-D generalized Oldroyd-B model with only stress tensor diffusion $(-Δ)^βτ$. In the case $β=1$, we first establish optimal decay rate in $H^1$ framework and remove the smallness assumption of low frequencies by virtue of the Fourier splitting method and the Littlewood-Paley decomposition theory. Furthermore, we prove optimal decay rate for the highest derivative of the solution by a different method combining time frequency decomposition and the time weighted energy estimate. In the case $\frac 1 2\leq β<1$, we study optimal decay rate for the highest derivative of the solution by the improved Fourier splitting method.