论文标题
$ u(1)$ u量的Q-balls的动态演变在轴对称性中
Dynamical evolution of $U(1)$ gauged Q-balls in axisymmetry
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the dynamics of $U(1)$ gauged Q-balls using fully non-linear numerical evolutions in axisymmetry. Focusing on two models with logarithmic and polynomial scalar field potentials, we numerically evolve perturbed gauged Q-ball configurations in order to assess their stability and determine the fate of unstable configurations. Our simulations suggest that there exist both stable and unstable branches of solutions with respect to axisymmetric perturbations. For solutions belonging to the stable branch, the gauged Q-balls respond to the perturbations by oscillating continuously or weakly radiating before returning to the initial configuration. For the unstable branch, the solutions are eventually destroyed and can evolve in several ways, such as dispersal of the fields to infinity or fragmentation into smaller gauged Q-balls. In some cases, we observe the formation of ring-like structures which we call "gauged Q-rings". We also investigate the stability of gauged Q-balls when the gauge coupling is small, finding that the behaviour of these configurations closely resembles that of ordinary (non-gauged) Q-balls.