论文标题
使用滑动模式控制和神经网络的自适应有限时间模型估计和操纵器视觉伺服伺服的控制
Adaptive Finite-Time Model Estimation and Control for Manipulator Visual Servoing using Sliding Mode Control and Neural Networks
论文作者
论文摘要
没有系统模型的基于图像的视觉伺服宣传是具有挑战性的,因为很难通过仅通过视觉测量来准确地估算手眼关系。而,以局部线性格式与雅各布矩阵表示的估计手眼关系的准确性对整个系统的性能很重要。在本文中,我们提出了一个有限的时间控制器以及在线和离线方式结合使用的Jacobian矩阵估计器。首先制定局部线性公式。然后,我们使用在线和离线方法的组合来增强高度耦合和非线性手眼关系与通过深度摄像头收集的数据的估计。对神经网络(NN)进行了预训练,以对Jacobian矩阵进行相对合理的初始估计。然后,进行了在线更新方法,以修改经过训练的NN以进行更准确的估计。此外,引入滑动模式控制算法以实现有限的时间控制器。与以前的方法相比,我们的算法具有更好的收敛速度。与其他数据驱动的估计器相比,提出的估计器在初始估计和强大的跟踪功能的准确性和强大的跟踪功能方面具有出色的性能。提出的方案获得了神经网络和有限时间控制效应的组合,该效应与指数收敛相比,驱动更快的收敛速度。我们算法的另一个主要特征是,系统中的状态信号被证明是半全球实用的有限时间稳定。进行了几项实验,以验证提出的算法的性能。
The image-based visual servoing without models of system is challenging since it is hard to fetch an accurate estimation of hand-eye relationship via merely visual measurement. Whereas, the accuracy of estimated hand-eye relationship expressed in local linear format with Jacobian matrix is important to whole system's performance. In this article, we proposed a finite-time controller as well as a Jacobian matrix estimator in a combination of online and offline way. The local linear formulation is formulated first. Then, we use a combination of online and offline method to boost the estimation of the highly coupled and nonlinear hand-eye relationship with data collected via depth camera. A neural network (NN) is pre-trained to give a relative reasonable initial estimation of Jacobian matrix. Then, an online updating method is carried out to modify the offline trained NN for a more accurate estimation. Moreover, sliding mode control algorithm is introduced to realize a finite-time controller. Compared with previous methods, our algorithm possesses better convergence speed. The proposed estimator possesses excellent performance in the accuracy of initial estimation and powerful tracking capabilities for time-varying estimation for Jacobian matrix compared with other data-driven estimators. The proposed scheme acquires the combination of neural network and finite-time control effect which drives a faster convergence speed compared with the exponentially converge ones. Another main feature of our algorithm is that the state signals in system is proved to be semi-global practical finite-time stable. Several experiments are carried out to validate proposed algorithm's performance.