论文标题

用图神经网络和结构化状态空间模型对多元生物信号进行建模

Modeling Multivariate Biosignals With Graph Neural Networks and Structured State Space Models

论文作者

Tang, Siyi, Dunnmon, Jared A., Qu, Liangqiong, Saab, Khaled K., Baykaner, Tina, Lee-Messer, Christopher, Rubin, Daniel L.

论文摘要

多变量生物信号在许多医学领域(例如脑电图,多摄影术和心电图)中普遍存在。由于(1)(1)远程暂时依赖性和(2)电极之间的复杂空间相关性,因此对多元生物信号的时空依赖性建模是有挑战性的。为了应对这些挑战,我们建议将多元生物信号表示为时间依赖性图,并引入Graphs4mer,Graphs4mer是一种通用图神经网络(GNN)架构,通过对生物信号中的时空依赖性进行建模来改善生物信号分类任务的性能。具体而言,(1)我们利用结构化状态空间体系结构(一种最新的深序序列模型)来捕获生物信号中的长期时间依赖性,并且(2)我们在GraphS4mer中提出了一个图形结构学习层,以在数据中动态地学习图形结构。我们在三个不同的生物信号分类任务上评估了我们的模型,并表明Graphs4mer对现有模型的持续改进,包括(1)从脑电图信号中癫痫发作检测,在AUROC中以自我监督的预训练比以前的GNN优于先前的GNN。 (2)从多个学信号信号中的睡眠分期,与现有的睡眠分期模型相比,宏观F1分数提高了4.1点; (3)12导潜在的心电图分类,在宏F1分数中优于先前的最新模型2.7分。

Multivariate biosignals are prevalent in many medical domains, such as electroencephalography, polysomnography, and electrocardiography. Modeling spatiotemporal dependencies in multivariate biosignals is challenging due to (1) long-range temporal dependencies and (2) complex spatial correlations between the electrodes. To address these challenges, we propose representing multivariate biosignals as time-dependent graphs and introduce GraphS4mer, a general graph neural network (GNN) architecture that improves performance on biosignal classification tasks by modeling spatiotemporal dependencies in biosignals. Specifically, (1) we leverage the Structured State Space architecture, a state-of-the-art deep sequence model, to capture long-range temporal dependencies in biosignals and (2) we propose a graph structure learning layer in GraphS4mer to learn dynamically evolving graph structures in the data. We evaluate our proposed model on three distinct biosignal classification tasks and show that GraphS4mer consistently improves over existing models, including (1) seizure detection from electroencephalographic signals, outperforming a previous GNN with self-supervised pre-training by 3.1 points in AUROC; (2) sleep staging from polysomnographic signals, a 4.1 points improvement in macro-F1 score compared to existing sleep staging models; and (3) 12-lead electrocardiogram classification, outperforming previous state-of-the-art models by 2.7 points in macro-F1 score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源