论文标题

部分可观测时空混沌系统的无模型预测

From Fake News to #FakeNews: Mining Direct and Indirect Relationships among Hashtags for Fake News Detection

论文作者

Zhou, Xinyi, Zafarani, Reza, Ferrara, Emilio

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The COVID-19 pandemic has gained worldwide attention and allowed fake news, such as ``COVID-19 is the flu,'' to spread quickly and widely on social media. Combating this coronavirus infodemic demands effective methods to detect fake news. To this end, we propose a method to infer news credibility from hashtags involved in news dissemination on social media, motivated by the tight connection between hashtags and news credibility observed in our empirical analyses. We first introduce a new graph that captures all (direct and \textit{indirect}) relationships among hashtags. Then, a language-independent semi-supervised algorithm is developed to predict fake news based on this constructed graph. This study first investigates the indirect relationship among hashtags; the proposed approach can be extended to any homogeneous graph to capture a comprehensive relationship among nodes. Language independence opens the proposed method to multilingual fake news detection. Experiments conducted on two real-world datasets demonstrate the effectiveness of our approach in identifying fake news, especially at an \textit{early} stage of propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源