论文标题

在满足六度的多项式身份的一类代数上

On a class of Algebras Satisfying polynomial identity of degree six

论文作者

Kabre, Daouda, Consiebo, André

论文摘要

在本文中,我们研究了满足6度的多项式身份的一类代数的结构。我们表明,假设存在非零愿,则说明,如果代数满足这种身份,它将承认与此态度相关的PEIRCE分解。我们研究了代数结构,并强调了该类别的代数与伯恩斯坦代数,火车代数,约旦代数和权力联想代数的连接。 关键词:Peirce Decomposition,Bernstein代数,Jordan代数,权力协会代数,火车代数,多项式身份,iDempotent。

In this paper we study the structure of a class of algebras satisfying a polynomial identity of degree 6. We show, assuming the existence of a non-zero idempotent, that if an algebra satisfies such an identity, it admits a Peirce decomposition related to this idempotent. We studied the algebraic structure and highlighted the connections of the algebras of this class with Bernstein algebras, train algebras, Jordan algebras and power associative algebras. Keywords: Peirce decomposition, Bernstein algebra, Jordan algebra, Power associative algebra, train algebra,polynomial identity, idempotent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源