论文标题

核电站电力变压器中异常检测的机器学习方法

Machine Learning Methods for Anomaly Detection in Nuclear Power Plant Power Transformers

论文作者

Katser, Iurii, Raspopov, Dmitriy, Kozitsin, Vyacheslav, Mezhov, Maxim

论文摘要

电源变压器是核电厂(NPP)的重要组成部分。目前,NPP运营着许多具有延长服务寿命的电力变压器,超过了指定的25年。由于服务寿命的延长,监视电源变压器技术状况的任务变得紧急。监测功率变压器的一种重要方法是溶解气体的色谱分析。它基于控制溶解在变压器油中的气体浓度的原理。设备中几乎任何类型的缺陷的出现都伴随着溶解在油中的气体的形成,而特定类型的缺陷则以不同数量的气体产生其气体。目前,在NPPS,用于变压器设备的监视系统使用预定义的控制限制,以溶解油中溶解气体的浓度。这项研究描述了开发算法的阶段,以使用机器学习和数据分析方法自动检测变压器中的缺陷和故障。在机器学习模型中,我们训练了逻辑回归,决策树,随机森林,梯度增强,神经网络。然后将其中的最好的组合成一个集合(堆叠classifier),在测试样本上,F1得分为0.974。为了开发数学模型,我们使用了有关变压器状态的数据,其中包含具有气体浓度值的时间序列(H2,CO,C2H4,C2H2)。数据集被标记并包含四种操作模式:正常模式,部分放电,低能量排放,低温过热。

Power transformers are an important component of a nuclear power plant (NPP). Currently, the NPP operates a lot of power transformers with extended service life, which exceeds the designated 25 years. Due to the extension of the service life, the task of monitoring the technical condition of power transformers becomes urgent. An important method for monitoring power transformers is Chromatographic Analysis of Dissolved Gas. It is based on the principle of controlling the concentration of gases dissolved in transformer oil. The appearance of almost any type of defect in equipment is accompanied by the formation of gases that dissolve in oil, and specific types of defects generate their gases in different quantities. At present, at NPPs, the monitoring systems for transformer equipment use predefined control limits for the concentration of dissolved gases in the oil. This study describes the stages of developing an algorithm to detect defects and faults in transformers automatically using machine learning and data analysis methods. Among machine learning models, we trained Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, Neural Networks. The best of them were then combined into an ensemble (StackingClassifier) showing F1-score of 0.974 on a test sample. To develop mathematical models, we used data on the state of transformers, containing time series with values of gas concentrations (H2, CO, C2H4, C2H2). The datasets were labeled and contained four operating modes: normal mode, partial discharge, low energy discharge, low-temperature overheating.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源