论文标题
基于粒子过滤器的信息获得的主动探索,以进行有效的空间概念形成
Active Exploration based on Information Gain by Particle Filter for Efficient Spatial Concept Formation
论文作者
论文摘要
自主机器人需要通过探索环境并与用户互动来学习各个地方的类别。但是,用用户的语言说明准备培训数据集是耗时且劳动力密集的。此外,有效的探索对于适当的概念形成和快速的环境覆盖范围至关重要。为了解决这个问题,我们提出了一种主动推理方法,称为空间概念形成,其基于信息增益的主动探索(SPCOAE),使用粒子过滤器和基于信息增益的目标确定在概率生成模型中结合了顺序的贝叶斯推断。这项研究将机器人的动作解释为询问用户的目的地的选择,“这是什么样的地方?”在主动推理的背景下。这项研究提供了对所提出方法的技术方面的见解,包括机器人的主动感知和探索,以及该方法如何使移动机器人能够通过主动探索学习空间概念。我们的实验证明了Spcoae在有效地确定家庭环境中合适的空间概念的目的地方面的有效性。
Autonomous robots need to learn the categories of various places by exploring their environments and interacting with users. However, preparing training datasets with linguistic instructions from users is time-consuming and labor-intensive. Moreover, effective exploration is essential for appropriate concept formation and rapid environmental coverage. To address this issue, we propose an active inference method, referred to as spatial concept formation with information gain-based active exploration (SpCoAE) that combines sequential Bayesian inference using particle filters and information gain-based destination determination in a probabilistic generative model. This study interprets the robot's action as a selection of destinations to ask the user, `What kind of place is this?' in the context of active inference. This study provides insights into the technical aspects of the proposed method, including active perception and exploration by the robot, and how the method can enable mobile robots to learn spatial concepts through active exploration. Our experiment demonstrated the effectiveness of the SpCoAE in efficiently determining a destination for learning appropriate spatial concepts in home environments.