论文标题

无形的后门攻击,动态触发因素重新识别

Invisible Backdoor Attack with Dynamic Triggers against Person Re-identification

论文作者

Sun, Wenli, Jiang, Xinyang, Dou, Shuguang, Li, Dongsheng, Miao, Duoqian, Deng, Cheng, Zhao, Cairong

论文摘要

近年来,人重新识别(REID)在广泛的现实应用程序中迅速发展,但也带来了对抗性攻击的重大风险。在本文中,我们专注于对Deep Reid模型的后门攻击。现有的后门攻击方法遵循全面或全能攻击方案,在训练集中已经看到了测试集中的所有目标类别。但是,REID是一个更复杂的细粒开放式识别问题,其中测试集中的身份不包含在训练集中。因此,先前用于分类的后门攻击方法不适用于REID。为了改善这个问题,我们在一个新的全能场景下,提出了对深里德的新型后门攻击,称为动态触发器无形的后门攻击(DT-IBA)。 DT-IBA无需从训练集中学习固定的触发器,而是可以动态生成任何未知身份的新触发器。具体而言,提出了一个身份散列网络,以首先从参考图像提取目标身份信息,然后通过图像隐志将其注入良性图像中。我们广泛验证了对基准数据集拟议攻击的有效性和隐身性,并评估了几种防御方法对我们的攻击的有效性。

In recent years, person Re-identification (ReID) has rapidly progressed with wide real-world applications, but also poses significant risks of adversarial attacks. In this paper, we focus on the backdoor attack on deep ReID models. Existing backdoor attack methods follow an all-to-one or all-to-all attack scenario, where all the target classes in the test set have already been seen in the training set. However, ReID is a much more complex fine-grained open-set recognition problem, where the identities in the test set are not contained in the training set. Thus, previous backdoor attack methods for classification are not applicable for ReID. To ameliorate this issue, we propose a novel backdoor attack on deep ReID under a new all-to-unknown scenario, called Dynamic Triggers Invisible Backdoor Attack (DT-IBA). Instead of learning fixed triggers for the target classes from the training set, DT-IBA can dynamically generate new triggers for any unknown identities. Specifically, an identity hashing network is proposed to first extract target identity information from a reference image, which is then injected into the benign images by image steganography. We extensively validate the effectiveness and stealthiness of the proposed attack on benchmark datasets, and evaluate the effectiveness of several defense methods against our attack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源