论文标题
本地可调图算法的差异隐私:$ k $ - 核分解,低度订购和密度的子图
Differential Privacy from Locally Adjustable Graph Algorithms: $k$-Core Decomposition, Low Out-Degree Ordering, and Densest Subgraphs
论文作者
论文摘要
差异化私有算法允许大规模数据分析,同时保留用户隐私。为图形数据设计这种算法是重要性的,该算法随着个人之间各种(敏感)关系的大型网络的增长而变得重要。据我们所知,尽管在这个领域中存在着丰富的重要文献历史,但没有结果正式地在某些平行图和分布式图算法和差异私有图分析之间建立了关系。在本文中,我们定义\ emph {局部可调}图算法,并证明这种类型的算法可以转换为差异化的私有算法。 我们的形式化是由我们在许多问题的中央和本地模型中提出的一系列结果,包括$ k $ - 核心分解,低度订购和最密集的子图。首先,我们设计了$ \ varepsilon $ - 差异(dp)算法,该算法返回一个诱导密度子图的子集,至少$ \ frac {d^*} {1+η} {1+η} {1+η} - o \ o \ left(\ text {poly} {poly} \ log n)/\ varepsilon \ wher输入图(对于任何常数$η> 0 $)中的密集子图。该算法在维持接近线性的运行时,在先前最著名的私有次数子图算法的乘法近似因子上取得了两倍的改进。 然后,我们提出了$ \ varepsilon $ locally边缘差异私有(LEDP)算法,用于$ k $ core-core分解。我们的LEDP算法提供了近似值(对于任何常数$η> 0 $),并使用$(2+η)$乘法和$ o \ left(\ text {poly} \ left(\ log n \ right)/\ varepsilon \ right(\ text {poly} \ left(\ log log n \ right)/\ right)$添加错误。这是第一个输出私有$ k $ core分解统计信息的差异私有算法。
Differentially private algorithms allow large-scale data analytics while preserving user privacy. Designing such algorithms for graph data is gaining importance with the growth of large networks that model various (sensitive) relationships between individuals. While there exists a rich history of important literature in this space, to the best of our knowledge, no results formalize a relationship between certain parallel and distributed graph algorithms and differentially private graph analysis. In this paper, we define \emph{locally adjustable} graph algorithms and show that algorithms of this type can be transformed into differentially private algorithms. Our formalization is motivated by a set of results that we present in the central and local models of differential privacy for a number of problems, including $k$-core decomposition, low out-degree ordering, and densest subgraphs. First, we design an $\varepsilon$-edge differentially private (DP) algorithm that returns a subset of nodes that induce a subgraph of density at least $\frac{D^*}{1+η} - O\left(\text{poly}(\log n)/\varepsilon\right),$ where $D^*$ is the density of the densest subgraph in the input graph (for any constant $η> 0$). This algorithm achieves a two-fold improvement on the multiplicative approximation factor of the previously best-known private densest subgraph algorithms while maintaining a near-linear runtime. Then, we present an $\varepsilon$-locally edge differentially private (LEDP) algorithm for $k$-core decompositions. Our LEDP algorithm provides approximates the core numbers (for any constant $η> 0$) with $(2+η)$ multiplicative and $O\left(\text{poly}\left(\log n\right)/\varepsilon\right)$ additive error. This is the first differentially private algorithm that outputs private $k$-core decomposition statistics.