论文标题
准确性助推器:启用4位定位点算术进行DNN训练
Accuracy Booster: Enabling 4-bit Fixed-point Arithmetic for DNN Training
论文作者
论文摘要
对训练DNN模型的计算资源的前所未有的需求导致搜索最少的数值编码。最新的最新提议(SOTA)提倡多层缩放狭窄的位宽度数值格式。在本文中,我们表明单层缩放足以保持训练准确性,同时最大化算术密度。我们将先前提出的单层缩放格式确定用于8位训练,混合块浮点(HBFP),是最小化的最佳候选者。我们使用数学工具对HBFP设计空间进行全面探索,以研究各种参数之间的相互作用,并确定跨层和时代的较小编码的机会。根据我们的发现,我们提出了准确性助推器,这是一种混合曼氏抗HBFP技术,该技术仅在最后一个时期和第一/最后一层中,使用4位Mantissas用于培训中所有算术操作的99%以上。我们显示,准确性助推器可以使所有其他SOTA格式的算术密度提高至少2.3倍,同时在4位训练中实现最先进的精度。
The unprecedented demand for computing resources to train DNN models has led to a search for minimal numerical encoding. Recent state-of-the-art (SOTA) proposals advocate for multi-level scaled narrow bitwidth numerical formats. In this paper, we show that single-level scaling is sufficient to maintain training accuracy while maximizing arithmetic density. We identify a previously proposed single-level scaled format for 8-bit training, Hybrid Block Floating Point (HBFP), as the optimal candidate to minimize. We perform a full-scale exploration of the HBFP design space using mathematical tools to study the interplay among various parameters and identify opportunities for even smaller encodings across layers and epochs. Based on our findings, we propose Accuracy Booster, a mixed-mantissa HBFP technique that uses 4-bit mantissas for over 99% of all arithmetic operations in training and 6-bit mantissas only in the last epoch and first/last layers. We show Accuracy Booster enables increasing arithmetic density over all other SOTA formats by at least 2.3x while achieving state-of-the-art accuracies in 4-bit training.