论文标题

$ \ Mathcal s(\ Mathfrak G)$的有限订单,定期收缩和泊松副总代理的自动形态学

Automorphisms of finite order, periodic contractions, and Poisson-commutative subalgebras of $\mathcal S(\mathfrak g)$

论文作者

Panyushev, Dmitri, Yakimova, Oksana

论文摘要

令$ \ mathfrak g $为{\ sf aut}(\ mathfrak g)$有限的订单自动形态和$ \ mathfrak g_0 $ subalgebra的固定点的固定点$ \ \ vartheta $。最近,我们注意到,使用$ \ vartheta $一个人可以在$ \ Mathcal s(\ Mathfrak g)$上构建一支兼容的Poisson支架,从而构建一个“大型” poisson poisson-poisson-commitative subalgebra $ \ Mathcal z(\ Mathfrak G,\ vartheta)$ $ \ \ \ \ \ \ \ \ \ Mathak^\ ge) G_0} $。在本文中,我们研究了$(\ mathfrak g,\ vartheta)$的不变理论属性,以确保$ \ mathcal z(\ mathfrak g,\ vartheta)$的良好属性。与$ \ vartheta $相关联,一个自然的谎言代数收缩$ \ mathfrak g _ {(0)} $ $ \ mathfrak g $和$ \ MATHCAL S(= G.G.S。)的概念在$ \ Mathcal s(\ Mathfrak g)^\ Mathfrak g $中。我们证明,在许多情况下,平等$ {\ mathsf {ind \,}}} \ Mathfrak g _ {(0)} = {\ Mathsf {indsf {ind \,}} \ Mathfrak g $ holds和$ \ Mathcal S(\ Mathcal s(\ Mathfrak g.g $)根据V.G. KAC的有限订单自动形态学分类(1969),$ \ vartheta $可以用KAC图,$ \ Mathcal K(\ Vartheta)$表示,我们的结果经常使用此演示文稿。最令人惊讶的观察结果是,$ \ Mathfrak g _ {(0)} $仅取决于带有非零标签的$ \ Mathcal k(\ vartheta)$中的一组节点,并且如果$ \ \ vartheta $是内在的,并且某个标签是非零的,则是$ \ mathfrak g g _ _ ^ is as par par cottotion parection $ \ Mathfrak G $。

Let $\mathfrak g$ be a semisimple Lie algebra, $\vartheta\in {\sf Aut}(\mathfrak g)$ a finite order automorphism, and $\mathfrak g_0$ the subalgebra of fixed points of $\vartheta$. Recently, we noticed that using $\vartheta$ one can construct a pencil of compatible Poisson brackets on $\mathcal S(\mathfrak g)$, and thereby a `large' Poisson-commutative subalgebra $\mathcal Z(\mathfrak g,\vartheta)$ of $\mathcal S(\mathfrak g)^{\mathfrak g_0}$. In this article, we study invariant-theoretic properties of $(\mathfrak g,\vartheta)$ that ensure good properties of $\mathcal Z(\mathfrak g,\vartheta)$. Associated with $\vartheta$ one has a natural Lie algebra contraction $\mathfrak g_{(0)}$ of $\mathfrak g$ and the notion of a good generating system (=g.g.s.) in $\mathcal S(\mathfrak g)^\mathfrak g$. We prove that in many cases the equality ${\mathsf{ind\,}}\mathfrak g_{(0)}={\mathsf{ind\,}}\mathfrak g$ holds and $\mathcal S(\mathfrak g)^\mathfrak g$ has a g.g.s. According to V.G. Kac's classification of finite order automorphisms (1969), $\vartheta$ can be represented by a Kac diagram, $\mathcal K(\vartheta)$, and our results often use this presentation. The most surprising observation is that $\mathfrak g_{(0)}$ depends only on the set of nodes in $\mathcal K(\vartheta)$ with nonzero labels, and that if $\vartheta$ is inner and a certain label is nonzero, then $\mathfrak g_{(0)}$ is isomorphic to a parabolic contraction of $\mathfrak g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源