论文标题
以整数分区的平均值作为权力之和
On the mean average of integer partition as the sum of powers
论文作者
论文摘要
本文与函数$ r_ {k,s}(n)$有关,$ n $的(有序)表示的数量为$ s $ s $ as usatus $ k $ - th powers,其中整数$ k,s \ ge 2 $。我们检查函数的平均平均值,或等效地,\ begin {equation*} \ sum_ {m = 1}^n r_ {k,s}(m)。 \ end {equation*}
This paper is concerned with the function $r_{k,s}(n)$, the number of (ordered) representations of $n$ as the sum of $s$ positive $k$-th powers, where integers $k,s\ge 2$. We examine the mean average of the function, or equivalently, \begin{equation*} \sum_{m=1}^n r_{k,s}(m). \end{equation*}