论文标题
半群环上的模块的当地级共同体学
Graded local cohomology of modules over semigroup rings
论文作者
论文摘要
我们对分级模块在半群环上的局部共同体学模块进行了组合描述,并在分级最大理想下进行了支撑。该组合框架从有限的许多多面体细胞复合物的同源性方面,为希尔伯特系列的希尔伯特系列产生了Hochster型公式。 Cohen-紧随其后的是Macaulay标准。我们还提供了[18]表征cohen--macaulay仿射半群环的结果的替代证明。
We give a combinatorial description of local cohomology modules of a graded module over a semigroup ring, with support at the graded maximal ideal. This combinatorial framework yields Hochster-type formulas for the Hilbert series of such local cohomology modules in terms of the homology of finitely many polyhedral cell complexes. A Cohen--Macaulay criterion immediately follows. We also provide an alternative proof of a result of [18] characterizing Cohen--Macaulay affine semigroup rings.