论文标题
PMNET:通过监督学习的强大的Pathloss地图预测
PMNet: Robust Pathloss Map Prediction via Supervised Learning
论文作者
论文摘要
Pathloss预测是无线网络计划的重要组成部分。尽管已经成功使用了基于射线的方法,但它们需要大量的计算工作,这可能会随着5G/B5G(超出5G)系统中的网络致密性和/或使用较高频率的增加而变得越来越高。在本文中,我们提出并评估了一种名为PMNET的数据驱动和无模型的Pathloss预测方法。该方法使用有监督的学习方法:训练具有有限量的射线跟踪(或通道测量)数据和地图数据的神经网络(NN),然后在没有射线示踪数据的情况下预测位置的pathloss。我们提出的PATHLOSS MAP预测NN体系结构(由最先进的计算机视觉技术授权)优于先前提出的其他体系结构(例如,UNET,RadiOnet),同时显示出概括能力。此外,在4倍较小的数据集上训练的PMNET超过了其他基线(在4倍较大的数据集上训练),从而证实了PMNET的潜力。
Pathloss prediction is an essential component of wireless network planning. While ray tracing based methods have been successfully used for many years, they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in 5G/B5G (beyond 5G) systems. In this paper, we propose and evaluate a data-driven and model-free pathloss prediction method, dubbed PMNet. This method uses a supervised learning approach: training a neural network (NN) with a limited amount of ray tracing (or channel measurement) data and map data and then predicting the pathloss over location with no ray tracing data with a high level of accuracy. Our proposed pathloss map prediction-oriented NN architecture, which is empowered by state-of-the-art computer vision techniques, outperforms other architectures that have been previously proposed (e.g., UNet, RadioUNet) in terms of accuracy while showing generalization capability. Moreover, PMNet trained on a 4-fold smaller dataset surpasses the other baselines (trained on a 4-fold larger dataset), corroborating the potential of PMNet.