论文标题

丁丁覆盖的最佳性能受到撤回约束的约束

Optimal performance of a tontine overlay subject to withdrawal constraints

论文作者

Forsyth, Peter A., Vetzal, Kenneth R., Westmacott, G.

论文摘要

我们考虑单个丁丁退休帐户的持有人,指定了最高和最低提款金额(每年)。 Tontine帐户持有人在65岁时启动该帐户,并在活着的同时获得死亡率,但在死亡后丧失了帐户中的所有财富。持有人希望最大程度地提高撤回,并最大程度地减少预期的短缺,假设持有人幸存到95岁。投资者控制每年撤回的金额以及股票和债券投资的一部分。最佳控件是根据安装在近一个世纪市场数据的参数模型确定的。最佳控制算法基于使用傅立叶方法的动态编程和局部整数微分方程(PIDE)的解决方案。最佳策略(基于参数模型)使用固定块引导程序对历史数据进行重新采样从样品中测试。就预期的总撤回,预期的缺口(EW-ES)有效的边界而言,Tontine覆盖层极大地超过了最佳策略(没有丁丁覆盖),这反过来又超过了基于无处不在的4%规则的持续重量策略。

We consider the holder of an individual tontine retirement account, with maximum and minimum withdrawal amounts (per year) specified. The tontine account holder initiates the account at age 65, and earns mortality credits while alive, but forfeits all wealth in the account upon death. The holder desires to maximize total withdrawals, and minimize the expected shortfall, assuming the holder survives to age 95. The investor controls the amount withdrawn each year and the fraction of the investments in stocks and bonds. The optimal controls are determined based on a parametric model fitted to almost a century of market data. The optimal control algorithm is based on dynamic programming and solution of a partial integro differential equation (PIDE) using Fourier methods. The optimal strategy (based on the parametric model) is tested out of sample using stationary block bootstrap resampling of the historical data. In terms of an expected total withdrawal, expected shortfall (EW-ES) efficient frontier, the tontine overlay greatly outperforms an optimal strategy (without the tontine overlay), which in turn outperforms a constant weight strategy with withdrawals based on the ubiquitous four per cent rule.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源