论文标题
完美匹配:使用张量分解的RIS启用MIMO频道估计
The Perfect Match: RIS-enabled MIMO Channel Estimation Using Tensor Decomposition
论文作者
论文摘要
通信系统中可重新配置的智能表面(RISS)的部署提供了对传播环境的控制,这有助于增强多种通信目标。由于这些性能增长高度依赖于RIS的应用相移,因此必须在收发器处的准确的通道状态信息。但是,RISS传统上不仅缺乏信号处理功能,而且它们的端到端渠道也包括多个组件。因此,传统的渠道估计(CE)算法与RIS辅助通信系统不兼容,因为它们无法提供有关信道组件的必要信息,这对于有益的RIS配置至关重要。为了使RISS的全部潜力,我们建议使用基于张分解的CE,从而通过提供所需的频道组件来促进RIS的智能配置。我们使用规范多核(CP)分解,以利用结构化的时域飞行序列。与其他最先进的分解方法相比,通过同时基质对角线化(SECSI)算法提出的半代数CP分解效率更高,因为它不需要迭代过程。 SECSI对RIS辅助网络的好处通过数值结果验证,这表明了SECSI的个体和端到端CE准确度的提高。
The deployment of reconfigurable intelligent surfaces (RISs) in a communication system provides control over the propagation environment, which facilitates the augmentation of a multitude of communication objectives. As these performance gains are highly dependent on the applied phase shifts at the RIS, accurate channel state information at the transceivers is imperative. However, not only do RISs traditionally lack signal processing capabilities, but their end-to-end channels also consist of multiple components. Hence, conventional channel estimation (CE) algorithms become incompatible with RIS-aided communication systems as they fail to provide the necessary information about the channel components, which are essential for a beneficial RIS configuration. To enable the full potential of RISs, we propose to use tensor-decomposition-based CE, which facilitates smart configuration of the RIS by providing the required channel components. We use canonical polyadic (CP) decomposition, that exploits a structured time domain pilot sequence. Compared to other state-of-the-art decomposition methods, the proposed Semi-Algebraic CP decomposition via Simultaneous Matrix Diagonalization (SECSI) algorithm is more time efficient as it does not require an iterative process. The benefits of SECSI for RIS-aided networks are validated with numerical results, which show the improved individual and end-to-end CE accuracy of SECSI.