论文标题

$ o(n)$通用性通过全局解决方案对非扰动定点方程的关键性

Criticality of the $O(N)$ universality via global solutions to nonperturbative fixed-point equations

论文作者

Tan, Yang-yang, Huang, Chuang, Chen, Yong-rui, Fu, Wei-jie

论文摘要

功能重新归一化组方法中的固定点方程从大到消失的场进行了整合,在大型到消失场中,大型限制的渐近潜力被作为初始条件实现。这种方法使我们能够以高数值准确性获得全局的定点电位,从而将正确的渐近行为纳入了大磁场的极限。我们计算出的全球潜力与泰勒在小田地地区的扩张非常吻合,这也与大型田园政权的劳伦膨胀相吻合。对于一般情况而言,劳伦(Laurent)扩展在大型范围内的限制中,空间尺寸$ d $是$ 2 \ leq d \ leq 4 $的连续变量。 Wilson-Fisher固定点附近的扰动的特征值和特征值是通过特征扰动方法计算的。计算了$ o(n)$通用类别的不同值的关键指数和$ n $。

Fixed-point equations in the functional renormalization group approach are integrated from large to vanishing field, where an asymptotic potential in the limit of large field is implemented as initial conditions. This approach allows us to obtain a global fixed-point potential with high numerical accuracy, that incorporates the correct asymptotic behavior in the limit of large field. Our calculated global potential is in good agreement with the Taylor expansion in the region of small field, and it also coincides with the Laurent expansion in the regime of large field. Laurent expansion of the potential in the limit of large field for general case, that the spatial dimension $d$ is a continuous variable in the range $2\leq d \leq 4$, is obtained. Eigenfunctions and eigenvalues of perturbations near the Wilson-Fisher fixed point are computed with the method of eigenperturbations. Critical exponents for different values of $d$ and $N$ of the $O(N)$ universality class are calculated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源