论文标题

弗拉索夫 - 安培系统具有渐近保护预处理的能源旋转颗粒方法,具有精确的无卷曲约束

An Energy-Conserving Fourier Particle-in-Cell Method with Asymptotic-Preserving Preconditioner for Vlasov-Ampère System with Exact Curl-Free Constraint

论文作者

Li, Zhuoning, Xu, Zhenli, Yang, Zhiguo

论文摘要

我们为静电vlasov系统提供了有效,准确的能量持含量粒子〜(PIC)算法,特别强调了其高鲁棒性,用于模拟具有多个物理尺度的复杂等离子体系统。该方法由几个必不可少的元素组成:(\ romannumeral1)将原始的弗拉索夫 - 波森系统重新制作成具有差异/curl-fr-f-figoncons的等效vlasov-ampère系统; (\ romannumeral2)一种新型的具有结构的傅立叶空间离散化,它在离散级别中恰好保留了这些约束; (\ romannumeral3)一种针对高度非线性系统解决方案的预处理的安德森加速算法; (\ romannumeral4)基于广义欧姆的定律,对debye长度的隐式曲柄 - 尼科尔森方案进行了线性性和​​均匀的近似,该定律可作为拟议方法的渐近保护预处理。进行了数值实验,并进行了比较,在提出的持势方案,经典的跨越方案和一个陌生的操作员分解方案中进行了比较,以证明所提出的方法的优越性,尤其是对于跨越物理规模的等离子体系统。

We present an efficient and accurate energy-conserving implicit particle-in-cell~(PIC) algorithm for the electrostatic Vlasov system, with particular emphasis on its high robustness for simulating complex plasma systems with multiple physical scales. This method consists of several indispensable elements: (\romannumeral1) the reformulation of the original Vlasov-Poisson system into an equivalent Vlasov-Ampère system with divergence-/curl-free constraints; (\romannumeral2) a novel structure-preserving Fourier spatial discretization, which exactly preserves these constraints at the discrete level; (\romannumeral3) a preconditioned Anderson-acceleration algorithm for the solution of the highly nonlinear system; and (\romannumeral4) a linearized and uniform approximation of the implicit Crank-Nicolson scheme for various Debye lengths, based on the generalized Ohm's law, which serves as an asymptotic-preserving preconditioner for the proposed method. Numerical experiments are conducted, and comparisons are made among the proposed energy-conserving scheme, the classical leapfrog scheme, and a Strang operator-splitting scheme to demonstrate the superiority of the proposed method, especially for plasma systems crossing physical scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源