论文标题

CAPE:使用大语言模型中前提错误的纠正措施

CAPE: Corrective Actions from Precondition Errors using Large Language Models

论文作者

Raman, Shreyas Sundara, Cohen, Vanya, Idrees, Ifrah, Rosen, Eric, Mooney, Ray, Tellex, Stefanie, Paulius, David

论文摘要

从大语言模型(LLM)中提取常识知识提供了设计智能机器人的途径。当动作失败并经常诉诸于重试的情况下,而无需解决错误的基本原因,现有的方法将利用LLM进行计划的方法将无法恢复。我们提出了一种新颖的方法(CAPE),该方法试图提出纠正措施,以解决计划期间的前提错误。 Cape通过利用行动先决条件的几声推理来提高生成计划的质量。我们的方法使体现的代理人可以执行比基线方法更多的任务,同时确保语义正确性并最大程度地减少重新提出。在VirtualHome中,Cape生成了可执行计划的计划,同时将人类通知计划的正确性指标从28.89%提高到49.63%。我们的改进转移到波士顿动力学机器人以一组技能(用语言指定)和相关的前提条件初始化的波士顿动力学机器人转移,与Saycan相比,CAPE将执行任务计划的正确性指标提高了76.49%。我们的方法使机器人能够遵循自然语言命令并从失败中稳健地恢复,而基线的方法在很大程度上无法解决或无效地解决。

Extracting commonsense knowledge from a large language model (LLM) offers a path to designing intelligent robots. Existing approaches that leverage LLMs for planning are unable to recover when an action fails and often resort to retrying failed actions, without resolving the error's underlying cause. We propose a novel approach (CAPE) that attempts to propose corrective actions to resolve precondition errors during planning. CAPE improves the quality of generated plans by leveraging few-shot reasoning from action preconditions. Our approach enables embodied agents to execute more tasks than baseline methods while ensuring semantic correctness and minimizing re-prompting. In VirtualHome, CAPE generates executable plans while improving a human-annotated plan correctness metric from 28.89% to 49.63% over SayCan. Our improvements transfer to a Boston Dynamics Spot robot initialized with a set of skills (specified in language) and associated preconditions, where CAPE improves the correctness metric of the executed task plans by 76.49% compared to SayCan. Our approach enables the robot to follow natural language commands and robustly recover from failures, which baseline approaches largely cannot resolve or address inefficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源