论文标题
纵向数据的贝叶斯弯曲线回归模型,并应用了威斯康星州预防的威斯康星州认知性能轨迹的研究
BAyesian Bent-Line Regression model for longitudinal data with an application to the study of cognitive performance trajectories in Wisconsin Registry for Alzheimer's Prevention
论文作者
论文摘要
临床前阿尔茨海默氏病(AD)是AD连续性中最早的阶段,可以持续15至二十年,而受试者之间的认知下降轨迹非线性和异质性。当AD的临床前阶段的认知能力下降对于早期干预策略的发展至关重要,而疾病改良疗法可能是最有效的。在过去的十年中,人们对在纵向认知结果中的变化点(CP)模型的应用越来越兴趣。由于患者的变化点可能差异很大,因此必须对这种变化进行建模。在本文中,我们介绍了有关AD高风险的中年成年人认知功能的贝叶斯弯曲回归模型。我们提供了一种估计固定(组级)和随机(人级)CP,斜率前和CP的方法,以及在CP时进行认知的拦截。我们的模型不仅估计了个体认知轨迹,而且还估计了每个年龄段认知弯曲线曲线的分布,从而使研究人员和临床医生能够估计受试者的分位数。仿真研究表明,估计和推论程序在有限样品中表现出色。在威斯康星州预防(WARP)的威斯康星州注册中,应用于纵向认知复合材料的应用说明了实际用途。
Preclinical Alzheimer's disease (AD), the earliest stage in the AD continuum, can last fifteen to twenty years, with cognitive decline trajectories nonlinear and heterogeneous between subjects. Characterizing cognitive decline in the preclinical phase of AD is critical for the development of early intervention strategies when disease-modifying therapies may be most effective. In the last decade, there has been an increased interest in the application of change point (CP) models to longitudinal cognitive outcomes. Because patients' change points can vary greatly, it is essential to model this variation. In this paper, we introduce a BAyesian Bent-Line Regression model longitudinal data on cognitive function in middle-aged adults with a high risk of AD. We provide an approach for estimating the fixed (group-level) and random (person-level) CPs, slopes pre- and post-CP, and intercepts at CP for cognition. Our model not only estimates the individual cognitive trajectories but also the distributions of the cognitive bent line curves at each age, enabling researchers and clinicians to estimate subjects' quantiles. Simulation studies show that the estimation and inferential procedures perform reasonably well in finite samples. The practical use is illustrated by an application to a longitudinal cognitive composite in the Wisconsin Registry for Alzheimer's Prevention (WRAP).