论文标题
球形卷积神经网络可以从扩散MRI数据中改善大脑微观结构的估计
Spherical convolutional neural networks can improve brain microstructure estimation from diffusion MRI data
论文作者
论文摘要
扩散磁共振成像对脑组织的微结构特性敏感。但是,从测量的信号上估算临床和科学相关的微结构特性仍然是机器学习可能有助于解决的一个高度挑战性的反问题。这项研究调查了最近开发的旋转不变的球形卷积神经网络可以改善微结构参数估计。我们训练了一个球形卷积神经网络,以预测有效模拟嘈杂数据的基地真实参数值,并将训练有素的网络应用于在临床环境中获取的成像数据以生成微观结构参数图。我们的网络的性能优于球形平均技术和多层感知器,比旋转方差较小的球形平均技术的预测准确性高于多层感知器。尽管我们专注于神经元组织的受约束的两室模型,但网络和训练管道是可推广的,可用于估计任何高斯隔室模型的参数。为了强调这一点,我们还训练了网络,以预测三室模型的参数,该模型可以使用张量 - 值扩散编码来估算明显的神经体体密度。
Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve. This study investigated if recently developed rotationally invariant spherical convolutional neural networks can improve microstructural parameter estimation. We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data and applied the trained network to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our network performed better than the spherical mean technique and multi-layer perceptron, achieving higher prediction accuracy than the spherical mean technique with less rotational variance than the multi-layer perceptron. Although we focused on a constrained two-compartment model of neuronal tissue, the network and training pipeline are generalizable and can be used to estimate the parameters of any Gaussian compartment model. To highlight this, we also trained the network to predict the parameters of a three-compartment model that enables the estimation of apparent neural soma density using tensor-valued diffusion encoding.